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Sampling Signals

Uniform Sampling of Bandlimited Signals
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A.A. Lazar, "Time encoding with an integrate-and-fire neutron with a refractory period,” Neurocomput., 2004.



Sampling Signals

The Integrate-and-Fire Time-Encoding Machine (IF-TEM)
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= The output of the time-encoding machine is a strictly increasing set of time-instants that follow:
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= The signal must be reconstructed from the sequence of samples {t, },.cz.

A.A. Lazar, "Time encoding with an integrate-and-fire neutron with a refractory period,” Neurocomput., 2004.



Time-Based Sampling

Advantages

= Time encoding mimics representation of sensory signals.
= Time-encoding machine is an asynchronous device ~~ low power consumption.
s Nonuniform sampling ~» sparse measurements.

= Event driven sampling ~~ no redundancy.

Disadvantages

m Sophisticated sampling devices.
= Digital processing of continuous-domain signal is not possible.

m lterative reconstruction techniques.



Examples of Time-Encoding Machines

Zero-Crossing Instants
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= Simple implementation.

m Signal might have very few zero-crossings.
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Examples of Time-Encoding Machines

Level-Crossing Instants
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D. Gontier and M. Vetterli, “Sampling based on timing: Time encoding machines on shift-invariant subspaces,” Appl. Comput. Harmon. Anal., 2014.



Recovery of Bandlimited Signals

[ Theorem 1: Alternating Projections [Wiley, ‘78] ]
Let f € (L* N Bq)(R) and let P the projection operator from L%(R) to (L* N Bq)(R). Then, f can be
recovered from its nonuniform samples {t¢,, },.c7z with max i1 — tn| < % by the iterative algorithm: |
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Space of Set of functions that are
Bandlimited Functions . ./ “.___~ consistent with the measurements

R. G. Wiley, “Recovery of bandlimited signals from unequally spaced samples,” IEEE Trans. Comm., 1978.



Recovery of Bandlimited Signals

[ Theorem 2: Operator Formulation [Lazar, '04] ]

T

O Then, the input f to the IF-TEM can be perfectly

Let f € (L*NBg)(R) and suppose max thi1—tn| <
ne

recovered as f(t) = Elim fo(t), where

fes1 = foe +A(f — fo).
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Shift-Invariant Spaces
[Gontier, '14]

Extension to Multichannel

Bandlimited Sampling
[Adam, "19]

A.A. Lazar, “Time encoding with an integrate-and-fire neuron with a refractory period,” Neurocomput., 2004.
D. Gontier and M. Vetterli, “Sampling based on timing: Time encoding machines on shift-invariant subspaces,” Appl. Comput. Harmon. Anal., 2014.

K. Adam et al., Sampling and reconstruction of bandlimited signals with multi-channel time encoding,” arXiv, 2019.



Time-Encoding and Non-Uniform Sampling

How to reconstruct from nonuniform samples? How to guarantee dense sampling?

Bandlimited Signals: Alternating Projections
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Time-Encoding Machines
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" Bounds on sampling density:

Crossing TEM with s(t) = Acos(2nt/Ts) : Ty < T.

K0
b —max |f(t)]

teR

» Integrate-and-Fire TEM: T}, <

R.J. Duffin and A.C. Schaeffer, “A class of nonharmonic Fourier series,” IEEE Trans. Amer. Math. Soc., 1952.

A. Aldroubi and K. Grochenig, “Nonuniform sampling and reconstruction in shift-invariant spaces,” SIAM Review, 2001.



This Paper

s We consider time encoding of finite-rate-of-innovation (FRI) signals.

= In particular, we consider periodic sum of weighted and time-shifted pulses, and their time
encoding using the C-TEM and IF-TEM.

m Is reconstruction possible?

= If yes, under what conditions?
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Signal Model

Sum of Weighted and Time Shifted Pulses
s Consider a Ty-periodic FRI signal, z € L?([0, T|):

w(t) = Y ach(t — 7 — pTp)

peZ £=1

= The pulse h is known a priori.

s The parameters {ay, 7¢}7_, completely specify z ~» = has finite rate of innovation.

. . . 2L |
= The rate of innovation of x is — ~» = must be recoverable using 2L + 1 measurements.

1o
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Prior Art: Time Encoding of Impulse Streams

L
= Consider a stream of Dirac impulses: z(t) = Zagé(t =7 (1) s A y(t) C TIME (Y men
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g is a first-order exponential spline.

must satisty:

supp(g)l <, min 7oy — 7.

= Reconstruction is sequential, i.e., each a,0(t — 7¢) is reconstructed using signal moments:
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= This method can be extended to multi-channel bursts of Dirac impulses and to signals of the type

L

x(t) = Z ash(t — 1) with h following some conditions.
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R. Alexandru and P. L. Dragotti, “Reconstructing classes of non-bandlimited signals from time-encoded information,” arXiv, 2019.
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Frequency-Domain Representation

m Since z is Ty-periodic, it has a Fourier series representation:

keZ
where z[k] = iiz(kwo) Sum of Weighted
i Complex Exponentials

(SWCE)

m 2L + 1 contiguous samples of Z|k| are sufficient for parameter estimation [Vetterli, ‘02].

= The annihilating filter {y}/_, has the Z-transform:
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M. Vetterli et al., “Sampling signals with finite rate of innovation,” IEEE Trans. Signal Process., 2002.
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Kernel-Based Sampling of FRI Signals using TEMs

= The filtered signal y is Ty-periodic:

~ ~ R
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s Let the sampling kernel g satisty alias-cancellation conditions [Tur, "11]

1, ke K,

G(kwo) = {O kK

where K = {-K,---,—-1,0,1,--- , K}, for some K € N.

R. Tur et al., “Innovation rate sampling of pulse streams with applications to ultrasound imaging,” IEEE Trans. Signal Process., 2011.

A Finite Sum



Sampling using Crossing-Time-Encoding Machine
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Sufficient Conditions for Perfect Recovery

Recovery from C-TEM Measurements

s Forrecovery of parameters {ay,

= The sinusoidal reference crosses the signal at least once every period whenever |A| > sup |y(t)].

tE[O,T()[

2L + 1
s Hence, to record N > 2L + 1 samples in Ty-length interval, f, > T+ :
0

L
\/\/ VY

K| >2L+1,hence N > 2L+1.
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Sufficient Conditions for Perfect Recovery

Recovery from C-TEM Measurements

L Proposition 1: Recovery from Crossing-Time-Encoding Machine J

The set of time instants {t,}!_, C Tcr obtained using the C-TEM is a sufficient representation of
 the Tp-periodic signal  with N' > 2L + 1, when the reference signal s(t) = Acos(2nf,t) satisties

2L + 1

JAl> sup [y(t)] and f, > T

€0, T | 1o

0.4 Filtering and time encoding 04 Original signal and reconstruction
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Sampling using Integrate-and-Fire TEM
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Sampling Signals (revisited)

The Integrate-and-Fire Time-Encoding Machine (IF-TEM)
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= The output of the time-encoding machine is a strictly increasing set of time-instants that follow:

Stabilitv: KO <t — 1, < 0
b max [ f0)] ST TS b—max|f(0)]
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tn—|—1
t-Transform: / f(t)dt = —=b(tp,11 — tn) + KO.
t
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= The signal must be reconstructed from the sequence of samples {t, },.cz.

A.A. Lazar, "Time encoding with an integrate-and-fire neutron with a refractory period,” Neurocomput., 2004.



Sufficient Conditions for Perfect Recovery

Recovery from IFTEM Measurements

s Forrecovery of parameters {a, 7, };_, using the annihilating filter,

K|>2L+1,ie., N—1>2L+1.

m After the first trigger t1, the further NV — 1 triggers must come up in the interval [0, 7| and using
the upper bound on the difference:

K0
t N —1 5.
O e ) <
[OaTO[
. )
s The maximum value of t; < :
b — sup [y(t)]
[OaTO[
0 T
s Hence the parameters must satistfy ; —Fdsup < F()'

[OaTO[

20



Sufficient Conditions for Perfect Recovery

Recovery from IFTEM Measurements

[ Proposition 2: Recovery from Integrate-and-Fire Time-Encoding Machine J

The set of time instants {t,,}_; C 7;r obtained using the IF-TEM is a sufficient representation of the
 Ty-periodic signal x when, the matrix Q has full column rank and the parameters of the TEM satisfy the |

.. K7y 1o .
~condition < —with N >2(L+1).
0= sup @)~ N
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Extension to Aperiodic Signals

Periodized Sampling Kernel

s Convolution of a periodic signal = with a kernel g is equivalent to convolution of one period of
the signal x with a periodized version of the kernel g.

m Further, if the pulse h has finite support, the periodization reduces to a finite replication.

4 N

p(t) = Y ach(t— 7 — pTp) » g(t) - y(t)
pEZ £=1 9 y
. - - N

E(t) =Y agh(t—7) {9(t)= ) g(t—pT) - y(1)
=1 g (p=—F y

s The analysis of sampling and reconstruction of aperiodic-FRI signals is equivalent to those of
periodic signals after these appropriate modifications to the sampling kernel.

R. Tur et al., “Innovation rate sampling of pulse streams with applications to ultrasound imaging,” IEEE Trans. Signal Process., 2011.
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Summary

= We considered time encoding of finite-rate-of-innovation (FRI) signals.

= In particular, we considered periodic sum of weighted and time-shifted pulses, and their time
encoding using the C-TEM and IF-TEM.

m Is reconstruction possible?
Yes. We showed parameter recovery is possible using frequency-domain analysis.

= If yes, under what conditions?
We gave the sufficient conditions under which perfect reconstruction from C-TEM and IF-TEM
measurements is possible.

= We also showed an extension of the theory to aperiodic sum of weighted and time-shifted signals.
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